Legendre-type relations for generalized complete elliptic integrals
نویسندگان
چکیده
منابع مشابه
Asymptotic Formulas for Generalized Elliptic-type Integrals
Epstein-Hubbell [6] elliptic-type integrals occur in radiation field problems. The object of the present paper is to consider a unified form of different elliptic-type integrals, defined and developed recently by several authors. We obtain asymptotic formulas for the generalized elliptic-type integrals. Keywords—Elliptic-type Integrals, Hypergeometric Functions, Asymptotic Formulas.
متن کاملIntegrals involving complete elliptic integrals
We give a closed-form evaluation of a number of Erd elyi-Kober fractional integrals involving elliptic integrals of the rst and second kind, in terms of the 3F2 generalized hypergeometric function. Reduction formulae for 3F2 enable us to simplify the solutions for a number of particular cases. c © 1999 Elsevier Science B.V. All rights reserved.
متن کاملGeneralized elliptic-type integrals and asymptotic formulas
A number of families of elliptic-type integrals have been studied recently due to their importance and potential for applications in some problems of radiation physics. The object of this work is to present a unified and generalized form of such elliptic-type integrals and to study its properties, including recurrence formulas and asymptotic expansion.
متن کاملReduction of Elliptic Integrals to Legendre Normal Form
It is well known that any elliptic integral can be transformed into a linear combination of elementary functions and Legendre’s three Elliptic functions. Methods for transforming these integrals to the Legendre form are described in numerous papers and textbooks. However, when it comes to actually designing and implementing such a reduction algorithm the existing methods require significant mod...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Classical Analysis
سال: 2016
ISSN: 1848-5987
DOI: 10.7153/jca-09-04